
Unit 2 : Computer and Operating System Structure

Lesson 1 : Interrupts and I/O Structure

1.1. Learning Objectives

On completion of this lesson you will know :

 what interrupt is

 the causes of occurring interrupt

 instruction cycle with interrupt

 I/O structure.

1.2. Interrupts

A method by which other events can cause an interruption of the CPU's normal
execution. An Interrupt is a method by which the normal operation of the CPU can
be changed. Interrupts are a better solution than polling for handling I/O devices.
There are many methods to handle interrupts. Four general classes of interrupts are
:

 Program, trap instructions, page faults etc.

 Timer

 I/O devices and

 Hardware failure.

When an interrupt occurs a register in the CPU will be updated. When the CPU
finishes the current execute cycle, and when interrupts are enabled, it will examine
the register. If the register indicates that an interrupt has occurred and is enabled
the interrupt cycle will begin, Otherwise it will be bypassed. The interrupt cycle
will call some form of interrupt handler (usually supplied by the operating system)
that will examine the type of interrupt and decide what to do. The interrupt handler
will generally call other processes to actually handle the interrupt. The CPU follows
the simple program outlined in the following diagram.

An Interrupt is a method
by which the normal
operation of the CPU can
be changed.

Operating System

 28

Start

Fetch

Cycle

Execute

Cycle

Interrupt

Cycle

Halt

Interrupt

Disabled

Interrupt

Disabled

Fig.2.1 : Interrupt cycle with interrupts.

Interrupts are disabled when the operating system wishes to execute some code
that must not be interrupted. Examples include interrupt handlers, semaphore
operations. The following table describes the causes of occurring interrupts:

Table 2.1: The causes of occurring interrupts.

Interrupt Type Caused by...

Program trap
instructions page
faults etc.

generated by some condition which is a
result of program execution (error condition,
system call).

Timer generated by the system timer.

I/O generated by I/O controller, signals
completion of I/O task (either success or
failure).

Hardware failure power failure, memory parity error.

Simple Interrupt Processing

Steps for processing interrupts are shown below where steps 1 to 5 is done by
hardware and from 6 to 9 is done by software

1. Interrupt occurs
2. Processor finishes current instruction
3. processor signals acknowledgment of interrupt
4. processor pushes program status word (Program Status Word) and program

counter (Program Counter) onto stack
5. processor loads new Program Counter value based on interrupt

Computer and Operating System Structure

 29

6. save remainder of process information
7. process interrupt
8. restore process state information
9. restore Program Status Word and Program Counter.

1.3. I/O Structure

One of the main functions of an OS is to perform all the computer's I/O devices. It
issues commands to the devices, catch interrupts and handle errors. It provide an
interface between the devices and the rest of the system. We will discuss the I/O
hardware and I/O Software..

1.3.1. I/O Hardware

The I/O hardware is classified as

 I/O devices

 Device controllers and

 Direct memory access (DMA).

I/O Devices

Normally all input and output operations in operating system are done through
two types of devices; block oriented devices and character oriented devices. A block
oriented device is one in which information is stored and transferred at some fixed
block size (usually some multiple of 512 bytes), each one with its own address. The
block oriented device can read or write each block independently of all other ones
out or expand.

The character oriented device is one in which information is transferred via a
character stream. It has no block structure. It is not addressable. For example,
punched cards, terminals, printers, network interfaces, mouse etc.

The above classification scheme is not always true. Some device do not fit in. So,
the idea of device driver was introduced. The idea of device driver is to provide a
standard interface to all hardware devices. When a program reads or writes a file,
OS invokes the corresponding driver in a standardized way, telling it what it wants
done, thus decoupling the OS from the details of the hardware.

Device Controller

I/O units consist of mechanical and electronic components. The electronic
component is called device controller. It is also called printed circuit card. The
operating system deals with the controller.

The controller's job is to convert the serial bit stream into a block of bytes and
perform any error connection necessary. The controller for a CRT terminal also
works as a bit serial device at an equally low level.

I/O Hardware

I/O units consist of
mechanical and
electronic components.

I/O Devices

Operating System

 30

Each controller has a few registers that are used for communicating with the CPU
and these registers are part of the regular memory address space. This is a called
memory mapped I/O. IBM PC uses a special address space for I/O with each
controller allocated a certain portion of it. The following table shows some
examples of the controllers and their I/O addresses.

I/O Controller I/O Address

Keyboard 060 - 063

Hard disk 320 - 32F

Printer 378 - 37F

Floppy disk 3F0 - 3F7

 Table 2.2 : Controllers and their addresses.

The operating system performs I/O by writing commands into controller's
registers.

Direct Memory Access

DMA (Direct Memory Access) unit is capable of transferring data straight from
memory to I/O devices.

How DMA Works?

First the controller reads the block from the drive serially, bit by bit, until the entire
block is in the controller's internal buffer. Next, it computes the checksum to verify
that no read errors have occurred. Then the controller causes an interrupt when the
operating system starts running, it can read the disk block from the controller's
buffer a byte or a word at a time by executing a loop, with each iteration reading
one byte or word from a controller device register and storing it in memory.

After the controller has read the entire block from the device into its buffer and
verified the checksum, it copies the first byte or word into the main memory at the
address specified by the DMA memory address. Then it increments the DMA
address and decrements the DMA count by the numbers of bytes just transferred.
This process is repeated until the DMA count becomes zero, at which time the
controller causes an interrupt.

1.3.2. I/O Software

Let us discuss I/O software. The key idea is to organize the software as a series of
layers with lower ones concerned with hardware and upper ones concerned with
the interfaces to the users. These goals can be achieved by structuring the I/O
software in four layers.

 Interrupt handlers

I/O Software

Direct memory access

Computer and Operating System Structure

 31

 Device drivers

 Device independent OS software

 User level software.

Interrupt Handlers

The interrupt handlers will call other processes to handle interrupts that should be
hidden away, deep in the bowels of the OS. The best way to hide them is to have
every process starting an I/O operation block until the I/O has completed and
interrupt occurs.

Device Drivers

We already know, the idea of device driver is a program that is used to control each
device. All hardware components of the computer is called devices. We saw that
each controller has one/ more device register used to give it commands. The device
drivers issue these commands and check that they are carried out properly.

Device Independent I/O Software

Some of I/O software is device specific and others are device independent. The
basic function of the device independent software is to perform the I/O functions
that are common to all devices and to provide a uniform interface to the user level
software. The functions of device independent software are :

 Device naming.

 Device protection.

 Buffering.

 Providing a device independent block size.

 Error reporting.

 Allocating ad releasing dedicated devices.

 Uniform interfacing for the device drivers.

User Level I/O Software

Most of the I/O software is within the OS, a small portion of I/O software consist
of library linked user programs and I/O system calls are normally made by library
procedures. Beside these, formatting of I/O is done by library procedures. Another
function is spooling. Spooling is a way of dealing with dedicated I/O devices in a
multiprogramming system e.g. line printer. Fig. 2.2 summarizes the I/O system,
showing all the layers and the principal functions of each layer.

Layer

I/O I/O functions
replay

User processors Make I/O call; format I/O; spooling

Device-independent Naming, protection, blocking, buffering,

Layers of the I/O system.

The idea of device
driver is a program
that is used to control
each device.

I/O

request

Operating System

 32

software allocation

Device drivers Setup device registers; check status

Interrupt handlers Wakeup driver when I/O completed

Hardware Perform I/O operation

Fig. 2.2 : Layers of the I/O system and the main functions of each layer.

The arrows in Fig. 2.2 show the flow of control. When a user program tries to read a
block from a file, for example, the operating system is invoked to carry out the call.
The device-independent software looks in the cache, for example. If the needed
block is not there, it calls the device driver to issue the request to the hardware. The
process is then blocked until the disk operation has been completed.

When the disk is finished, the hardware generates an interrupt. The interrupt
handler is run to discover what has happened. It then extracts the status from the
device, and wakes up the sleeping process to finish off the I/O request and let the
user process continue.

Computer and Operating System Structure

 33

1.4. Exercise

1.4.1. Multiple choice questions

1. Normally I/O devices are divided into

i) 2 categories
ii) 3 categories
iii) 4 categories
iv) 5 categories.

2. A device driver is a

i) program
ii) controller
iii) DMA
iv) interrupt handler.

1.4.2. Questions for short answer

a) What are the four classes of interrupts? Provide one example of each class.
b) What do you understood by interrupt? What are the causes of occurring

interrupts?
c) Explain why they are important to an operating system.
d) What are the functions of the device independent software?
e) List some examples of device controllers.
f) What do you mean by memory mapped I/O?
g) What do you know about I/O devices?

1.4.3. Analytical questions

a) Describe the layers of the I/O system and list the main functions of each
layer.

b) What do you mean by DMA? Explain how it works.

Operating System

 34

Lesson 2 : System Calls and System Program

2.1. Learning Objectives

On completion of this lesson you will know:

 system calls

 categorized system calls and system programs

 discuss system program.

2.2. System Calls

User programs communicate with the operating system and request services from it
by making system calls. Fundamental services are handled through the use of
system calls. The interface between a running programs and the operating system is
defined by what is referred to as systems calls. A system call is a special type of
function call that allows user programs to access the services provided by the
operation system. A system call will usually generate a trap, a form of software
interrupt. The trap will force the machine to switch into the privileged kernel mode-
that allows access to data structures and memory of the kernel. In other words,
system calls establish a well defined boundary between a running object program
and the operating system. When a system call appears in a program, the situation is
equivalent to a conventional procedure call whereby control is transferred to
operating system routine invoked during the run time along with change of mode
from user to supervisor. These calls are generally available as assembly language
instructions, and are usually listed in the manuals used by assembly language
programmers.

System calls can be roughly grouped into three major categories: process or job
control, device and file manipulation, and information maintenance. In the
following discussion, the types of system calls provided by an operating system are
presented.

2.2.1. Process and Job Control

A running program needs to be able to halt its execution either normally (end) or
abnormally (abort). If the program discovers an error in its input and wants to
terminate abnormally.

A process or job executing one program may want to load and execute another
program. This allows the control card interpreter to execute a program as directed
by the control cards of the user job.

If control returns to the existing program when the new program terminates, we
must save the memory image of the existing program and effectively have created a
mechanism for one program to call another program. If both programs continue

A system call is a special
type of function call that
allows user programs to
access the services
provided by the operation
system.

Process and Job Control

Computer and Operating System Structure

 35

concurrently, we have created a new job or process to be multi-programmed. Then
system call (create process or submit job) are used.

If we create a new job or process, to control its execution, then control requires the
ability to determine and reset the attributes of a job or process, including its
priority, its maximum allowable execution time, and so on (get process attributes and
set process attributes). We may also want to terminate a job or process that we
created (terminate process) if we find that it is incorrect or on longer needed.

Having created new jobs or processes, we may need to wait for them to finish
execution. We may want to wait for a certain amount of time (wait time), but more
likely we want to wait for a specific event (wait event). The jobs or processes should
then signal when that event has occurred (signal event).

2.2.2. File Manipulation

The file system will be discussed in more detail in unit 7. We first need to be able to
create and delete files. Once the file is created, we need to open it and use it. We may
also read, write, and reposition (rewinding it or skipping to the end of the file).
Finally, we need to close the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a directory
structure in the file system. In addition, for either files or directories, we need to be
able to determine the values of various attributes, and perhaps reset them if
necessary. File attributes include the file, name a file type, protection codes,
accounting information, and so on. Two system calls, get file attribute and set file
attribute are required for this function.

2.2.3. Device Management

Files can be thought of a abstract or virtual devices. Thus many of the system calls
for files are also needed for devices. If there are multiple users of the system, we
must first request the device, to ensure that we have exclusive use of it. After we are
finished with the device, we must release it. Once the device has been requested
(and allocated to us), we can read, write, and (possibly) reposition the device, just as
with files.

2.2.4. Information Maintenance

Many system calls are used transferring information between the user program and
the operating system. For example, most systems have a system call to return the
current time and date. Other system calls may return information about the system,
such as the number of current users, the version number of the operating system,
the amount of free memory or disk space, and so on.

In addition, the operating system keeps information about all of its jobs and
processes, and there are system calls to access this information. Generally, there are
also calls to reset it (get process attributes and set process attributes).

File Manipulation

Device Management

 Information maintenance

Operating System

 36

The following summarizes the types of system calls normally provided by OS.

i). Process Control

 End, Abort

 Load

 Create Process, Terminate Process

 Get Process Attributes, Set Process Attributes

 Wait for Time

 Wait Event, Signal Event.

ii). File Manipulation

 Create File, Delete File

 Open, Close

 Read, Write, Reposition

 Get File Attributers, Set File Attributes.

iii). Device Manipulation

 Request Device, Release Device

 Read, Write, Reposition

 Get Device Attributes, Set Device Attributes.

iv). Information Maintenance

 Get Time of Date, Set Time or Data

 Get Data System, Set System Data

 Get Processes, File or Device Attributes, Set Process, File Device Attributes.

System calls to the operating system are further classified according to the type of
call. There are :

 Normal Termination

 Abnormal Termination

 Status Request

 Resource Request and

 I/O Requests.

Computer and Operating System Structure

 37

2.3. System Program

An important aspect of a modern system is its collection of systems programs to
solve common problems and provide a more convenient environment and
execution.

Systems programs can be classified into several categories :

File Manipulation : These programs create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories.

Status Information : Some programs simply ask the operating system for the date,
time, amount of available memory or disk space, number of users, or similar status
information.

File Modification : Several text editors may be available to create and modify the
content of files stored on disk or tape.

Programming Language Support : Compilers, assemblers, and interpreters for
common programming languages (such as Fortran, Cobol, Pascal, Basic, and so on)
are often provided with the operating system. But recently many of these programs
are being priced and provided separately.

Program Loading and Execution : Once a program is assembled or compiled, it
must be loaded into memory to be executed.

Application Program : Most operating systems come with programs which are
useful to solve some particularly common problems, such as compiler-compilers,
text formatters, plotting packages, database systems, statistical analysis packages,
and so on.

The most important system program for an OS is its command interpreter. It is that
program which is runs when a job initially starts or user first logs in to a time
sharing system.

The view of the operating system seen by most users is thus defined by its systems
programs, not by its actual system calls. Consequently, this view may be quite
removed from the actual system. The problems of designing a useful and friendly
user interface are many, but they are not direct functions of the operating system.

Classification of System
program

Operating System

 38

2.4. Exercise

2.4.1. Multiple choice questions

1. System calls provide the interface between

i) a running program and user
ii) a running program and programmer
iii) a running program and the OS
iv) user and hardware.

2.4.2. Questions for short answers

a) What do you understood by system calls?
b) How many types of system calls are there in this lesson?
c) Summarize the system calls provided by OS?

2.4.3. Analytical questions

a) What do you know about system programs?
b) Describe different categories of system programs.

Computer and Operating System Structure

 39

Lesson 3 : Operating System Structure

3.1. Learning Objectives

On completion of this lesson you will know :

 different types of OS system structure

 how a system call can be made

 micro kernel.

3.2. Operating System Structure

A number of approaches can be taken for configuring the components of an
operating system, ranging from a monolithic to a virtual machines. To conclude the
introduction, we identify several of the approaches that have been used to build OS.
There are four different structures of operating system, but in this lesson we will
discuss only three of them.

3.2.1. Monolithic System

The monolithic organization does not attempt to implement the various functions
process, file, device and memory management in distinct modules. Instead, all
function are implemented within a single module that contains all system routines
or process and all operating system data structure.

The operating system is written as a collection of procedures, each can call any of
the other ones whenever it needs to. When this technique is used, each procedure in
the system has a well defined interface in terms of parameters and results, and each
one is free to call any other one, if the latter provides some useful computation that
the former needs.

In monolithic systems, it is possible to have at least a little structure. The services
(system calls) provided by the operating system are requested by putting the
parameters in well-defined places, such as in registers or on the stack, and then
executing a special trap instruction known as a kernel call or supervisor call.

This instruction switches the machine from user mode to kernel mode (also known
as supervisor mode), and transfers control to the operating system, shown as event
1 in Fig. 2.3. Most CPUs have two modes; kernel mode, for the operating system, in
which all instructions are allowed; and user mode, for user programs, in which I/O
and certain other instructions are not allowed.

The operating system then examines the parameters of the call to determine which
system call is to be carried out, shown as 2 in Fig. 2.3. Next the operating system
indexes into a table that contains in slot x a pointer to the procedure that carries out
system call x. This operation, shown as 3 in Fig..2.3, identifies the service procedure,

The monolithic
organization does not
attempt to implement
the various functions
process, file, device
and memory
management in distinct
modules.

Operating System

 40

which is then called. Finally, the system call is finished and control is given back to
the user program.

 User Program # 2
 User mode
 User Program # 1
kernel 4
call
 service
 1 3 procedure OS/Kernel
 Mode

 Fig. 2.3 : Method of making system call.

How a system call can be made?

1. User program traps to kernel.
2. OS determines service number required.
3. Service is located and executed.
4. Control returns to user program.

This organization suggests a basic structure for the operating system :

 A main program that invokes the requested service procedure.

 A set of service procedures that carry out the system calls.

 A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care of
it. The utility procedures do things that are needed by several service procedures,
such as fetching data from user programs.

3.2.2. Client / Server or Micro-Kernel Approach

A micro-kernel is a "new" way of structuring an operating system. Instead of
providing all operating system services (as do most current kernels) a micro-kernel
provides a much smaller subset. Services usually provided are memory
management, CPU management and communication primitives. Typically a micro-
kernel will provide the mechanisms to perform these duties rather than the policy
of how they should be used. Other operating system services are moved into user
level processes that use the communication primitives of the micro-kernel to share
information. In this system, the OS responsibilities are separated out into separate
programs.

 dispatch table

 2

 Monolithic Kernel

A micro-kernel is a
"new" way of
structuring an
operating system.

Computer and Operating System Structure

 41

The kernel is stripped of much of its functionality, and basically only provides
communication between clients and server. The following Fig. 2.4 will clearly
illustrates client server model.

Client Client Process
server

Terminal
server

 File
Server

user
mode

Kernel

kernel
mode

Fig. 2.4 : Client server model.

The advantages of this structure is as follows :

 better way to write software

 easier to distribute across many machines.

The main disadvantage is the slow in speed.

Difference between monolithic and micro kernel system

A monolithic operating system contains all the necessary code in the one kernel.
This means that if any changes are made to the kernel the whole system must be
rebooted for the changes to take effect.

A micro-kernel operating system contains a much reduced set of code in the kernel
of the operating system. Most of the service provided by the OS are moved out into
separate user level processes.

All communication within a micro-kernel is generally via message passing whereas
a monolithic kernel relies on variables and local procedure calls. These attributes of
a micro-kernel mean:

 that it is easier to develop the user level parts of the micro-kernel as they can
be built on top of a fully working operating system using programming
tools,

 the user level processes can be recompiled and installed without rebooting
the machine,

 different service can be moved to totally different machines due to the
message passing nature of communication in s micro-kernel operating
system.

Clients obtains service
by sending messages
to server processes.

Difference between
monolithic and micro
kernel system

Operating System

 42

3.2.3. Virtual Machine

In the following discussion we will discuss the structure of a virtual machine
named VM/370 with CMS expand.

The first releases of OS/360 were batch systems. Many 360 users wanted to have
timesharing, so various groups, decided to write timesharing systems for it. The
official IBM timesharing system, TSS/360 was delivered late and was eventually
abandoned.

 Virtual 370s

 System calls here

I/O instructions here CMS CMS CMS trap here
 trap here VM/370

 370 Bare hardware

 Fig. 2.5 : The structure of VM/370 with CMS.

The next system was called CP/CMS and now called VM/370. The virtual machine
monitor, runs on the bare hardware and does the multiprogramming, providing
several machines to the next layer up, as shown in Fig. 2.5. Unlike all other
operating systems, these virtual machines are not extended machines, but they are
exact copies of the bare hardware, including kernel/user mode, I/O, interrupts, and
everything else the real machine has. Each virtual machine is identical to the true
hardware, each one can run any operating system that will run directly on the
hardware. Different virtual machines can run different operating systems. Some
run one of the descendants of OS/360 for batch processing, while other ones run a
single-user, interactive system called CMS (Conversational Monitor System) for
timesharing users.

When a CMS program executes a system call, the call is trapped to the operating
system in its own virtual machine, not to VM/370 just as it would if it were running
on a real machine instead of a virtual one. CMS then issues the normal hardware
I/O instructions for reading its virtual disk. These I/O instructions are trapped by
VM/370, which then performs them as part of its simulation of the real hardware.
By making a complete separation of the functions of multiprogramming and
providing an extended machine, each of the pieces can be much simpler, more
flexible, and easier to maintain.

Computer and Operating System Structure

 43

3.3. Exercise

3.3.1. Multiple choice questions

1. Most CPUs have two modes

i) kernel mode and monolithic mode
ii) kernel mode and supervisor mode
iii) kernel mode and user mode
iv) None of the above.

2. CMS stands for

i) computer mail system.
ii) conversational monitor system.
iii) computer message system.
iv) computer mail system.

3.3.2. Questions for short answers

a) What is a micro-kernel?
b) Explain the differences between a monolithic operating system and one

based on a micro-kernel architecture.
c) How a system call can be made?
d) What are the advantages and disadvantages of micro-kernel system?

3.3.3. Analytical questions

a) What do you know about virtual machine? Describe briefly.

Operating System

 44

