

Designing User Interface-2

62

Unit 3

Designing User Interface-2

Lesson 3.1-3

TreeView Control

A TreeView control is designed to present a list in a hierarchical structure.

It is similar to a directory listing. Users can open individual nodes that can in

turn contain child nodes. The TreeView control is suitable for displaying

XML data, but can be used for any data that can be represented in a

hierarchy.

Upon completion of this unit you will be able to:

Outcomes

 Create TreeView control.

 Use checkboxes in TreeView.

TreeView Contol

In visual studio 2008 a TreeView control is used to present a list or data in a

hierarchical structure. Individual list or data name is called node. So you can

use a TreeView control to display a hierarchy of nodes. Each node also can

have child nodes. In TreeView control have two types of nodes called root

node and child node respectively. Child nodes always stay under root nodes.

A TreeView also can be displayed with checkboxes next to the nodes. The

main properties of TreeView‘s are Nodes and SelectedNode. The Nodes

property contains the list of nodes in the TreeView and the SelectedNode

property gets or sets the currently selected node. You can add, remove and

clone a TreeNode. You can set the text for each tree node label by setting a

TreeNode object‘s text property. From TreeView‘s the user can expand a

node for showing its child nodes by clicking the plus sign (+) and collapse a

node for hiding its child nodes by clicking the minus sign (-).

The public properties of TreeView object are given in the following table:

 Visual Programming

63

Sl.

No.

Property

Name

Description

1. BorderStyle This is used to gets/sets the TreeView border style.

2. CheckBoxes This is used to gets/sets whether checkboxes should be

displayed next to tree nodes.

3. FullRowSelect This is used to gets/sets whether a selection should select

the whole width of the TreeView.

4. HideSelection This is used to gets/sets whether the selected tree node stays

highlighted, when the tree view loses the focus.

5. HotTracking This is used to gets/sets whether a tree node label should

change its appearance when the mouse pointer moves over

it.

6. ImageIndex This is used to gets/sets the image list index of the current

image.

7. ImageList This is used to gets/sets the image list used with this

TreeView.

8. Indent This is used to gets/sets the distance that each level should

be indented.

9. ItemHeight This is used to gets/sets the height of the tree nodes.

10. LabelEdit This is used to gets/sets whether tree node text can be

edited.

11. Nodes This is used to gets the collection of tree nodes.

12. PathSeperator This is used to gets/sets the string the tree node uses as a

path delimiter.

13. Scrollable This is used to gets/sets whether the tree view should

display scroll bars as needed.

14. SelectedImage

Index

This is used to gets/sets the image index for the image to

display when a node is selected.

15. SelectedNode This is used to gets/sets the node that is selected.

16. ShowLines This is used to gets/sets whether the lines are drawn

between tree nodes.

17. ShowPlusMin

us

This is used to gets/sets whether plus sign (+) and minus

sign (-) buttons are shown next to tree nodes with child tree

nodes.

18. ShowRootLine

s

This is used to gets/sets whether lines should be drawn

between the tree nodes and the root node.

19. Sorted This is used to gets/sets if the tree nodes should be sorted.

20. TopNode This is used to gets/sets the first visible tree node.

21. VisibleCount This is used to gets/sets the number of nodes that can be

seen currently.

TreeView Control

64

The public methods of TreeView objects are given in the following table:

Creating TreeView at Design Time

To create a TreeView at design time follow the following steps:

Step 1: Drag a TreeView control from the toolbox onto a

windows form, which will look like the following:

Step 2: Now click on collection option of Nodes property from the

properties window, which will look like the following:

Sl.

No.

Method’s Name Description

1. BeginUpdate This is used to disable redrawing of the TreeView.

2. CollapseAll This is used to collapse all nodes.

3. EndUpdate This is used to enables redrawing of the tree view.

4. ExpandAll This is used to expand all the nodes.

5. GetNodeAt This is used to gets the node that is at the given location.

6. GetNodeCount This is used to gets the number of nodes.

 Visual Programming

65

Step 3: Now a TreeNode editor window will appear, and click on Add

Root button,which will look like the following:

Step 4: Now change the text of Node0 option from the appearance

properties and type Computer Parts and then click ok button as like

following figure:

TreeView Control

66

Step 5: According to step 4 you can be create more than one root

nodes in TreeView by clicking Add Root button. Now we create child

node under root node. So now click on Add Child button. When you

click on Add Child button, by default Computer Parts (which is root

node) node is selected, so child nodes are created under this root

nodes. Now when you click on Add child button, Node1 option will

see under Computer parts node. Now select Node 1 option and then

change the text of Node 1 from the appearance properties and type

monitor on textbox then click ok as like the following:

Step 6: After clicking ok button you will look the following form.

Now click on + sign, then you will look the Parts Name Monitor under

root node Computer Parts.

 Visual Programming

67

Step 7: If you want to create more than one node under root node, you

should follow the step 6. Here we will create another node under

Computer Parts node like Hard disk, RAM, Mouse, Keyboard. So now

you select TreeView Control from the windows form and then click

collection option of Nodes from the properties window. And then

select Computer Parts node and click + sign, then click Add Child

button. Here you will see Node 2 is created under Monitor node, then

select Node 2 option and change the text from the appearance

properties and click ok button. According this procedure you can be

creating more than one node under root node. Here we create another

four child node as like the following:

Step 8: Now run the program and click + sign of the TreeView

control, you will look like the following window:

TreeView Control

68

Handling TreeView Events

TreeView events handling is very simple. TreeView controls have a number

of events. Most of the events are shown in Table 1. The default event is the

AfterSelect event, which occurs after a node has been selected. It is an event

of the TreeView control not of the TreeNode object that was selected, but

you can determine which node was selected with TreeViewEventArgs

object that is passed to you.

Table 1: Public Events Of TreeView object.

SL.No Events Name Description

1. AfterCheck This is occures when a node checkbox is

checked.

2. AfterSelect This is occures when a tree node is selected.

3. AfterCollapse This is occures when a tree node is collapsed.

4. AfterExpand This is occures when a tree node is expand.

5. BeforeCheck This is occures before a node checkbox is

checked.

6. BeforeSelect This is occurs before a node is selected.

7. BeforeCollapse This is occurs before a node is collapsed.

8. BeforeExpand This is occurs before a node is expand.

 Visual Programming

69

Example:

Step 1: Consider the example. Now drag and drop a textbox control on

windows form.

Step 2: Now just double click on TreeView Control and type the following

code under Treeview Control:

TextBox1.Text = "you clicked: " & e.Node.Text

Full code will be as follows:

Public Class Form1

 Private Sub TreeView1_AfterSelect(ByVal sender As

System.Object, ByVal e As

System.Windows.Forms.TreeViewEventArgs) Handles

TreeView1.AfterSelect

 TextBox1.Text = "you clicked: " & e.Node.Text

 End Sub

End Class

Step 3: Now run the program and click on any node then you look like the

following:

Using Checkboxes in TreeView Control

TreeView Control is a popular Component to developing standard software.

TreeView also can display checkboxes. You can make checkboxes appear in

a tree view by setting the tree view‘s CheckBoxes property to True.

Step 1: Create a new project and make a windows form1, a TreeView

Control, a Textbox and Two Buttons on windows form1. Now according to

section 31.2 example create a TreeView Control with several nodes like as

follows:

TreeView Control

70

Step 2: Now double click on Show Check Boxes button and type the

following code:

TreeView1.CheckBoxes = True

Step 3: Now double click on Disable Check Boxes button and type the

following code:

TreeView1.CheckBoxes = False

Step 4: Now double click on TreeView Control, you will see the

following code:

Private Sub TreeView1_AfterSelect(ByVal sender As

System.Object, ByVal e As

System.Windows.Forms.TreeViewEventArgs) Handles

TreeView1.AfterSelect

End Sub

Step 5: Now replace the above code segment with the following code:

TreeView1_AfterSelect replace with TreeView1_AfterCheck

TreeView1.AfterSelect replace with TreeView1.AfterCheck

Now the above code (step 4) will be as follows:

Private Sub TreeView1_AfterCheck(ByVal sender As

System.Object, ByVal e As

System.Windows.Forms.TreeViewEventArgs) Handles

TreeView1.AfterCheck

End Sub

Step 6: Now type the following code under TreeView Control:

 If e.Node.Checked Then

 TextBox1.Text = "You Checked :" &

e.Node.Text

 Visual Programming

71

 Else

 TextBox1.Text = "You UnChecked :" &

e.Node.Text

 End If

Now full code will be as follows:

Private Sub TreeView1_AfterCheck(ByVal sender As

System.Object, ByVal e As

System.Windows.Forms.TreeViewEventArgs) Handles

TreeView1.AfterCheck

 If e.Node.Checked Then

 TextBox1.Text = "You Checked :" &

e.Node.Text

 Else

 TextBox1.Text = "You UnChecked :" &

e.Node.Text

 End If

End Sub

Step 7: Now run the program and click on Show Check Boxes button,

you will see the checkboxes infront of node text and if you click on

Disable Check Boxes button, the checkboxes will be hiden. If you

click on check boxes of node like RAM, the corresponding text will be

shown in textbox that is ―You Checked:RAM ‖ and if you uncheck the

checkboxes like RAM, the corresponding text will be shown in

textbox tha is ― You UnChecked: RAM‖which will look like the

following:

TabControl

72

Lesson 3.4-3.6

TabControl

Introduction

This lesson is described how to create a simple tab control in Visual Studio

2008. To make this possible, we use the TabControl which creates different

views in the same page. As your application becomes crowded with various

controls, you may find its form running out of space. To solve such a

problem, you can create many controls on a form or container and display

some of them only in response to some action from the user.

Upon completion of this unit you will be able to:

Outcomes

 Create to TabControl.

 Add/remove TabPage.

TabControl

TabControl is an effective component in Visual studio 2008, which is used to

developing standard software. This is contains more than one tab pages. The

TabControl component manages tab pages where each page may contains

different child controls. You can create, add and remove controls using

TabControl properties.

The Public properties of TabControl objects are listed below:

SL

No.

Property Name Description

1. Alignment This is used to gets/sets where the tabs

appear(top, left, etc)

2. Appearance This is used to gets/sets the appearance of tabs

in a tab control.

3. DisplayRectangle This is used to gets/sets the bounding rectangle

of the tab pages

4. HotTrack This is used to gets/sets whether the tabs should

change appearance when the mouse is over

them.

5. ImageList This is used to gets/sets the images to show in

 Visual Programming

73

tabs.

6. Multiline This is used to gets/sets whether the tab control

can show more than one row of tabs.

7. RowCount This is used to gets/sets the numbers of rows in

the tab strip.

8. SelectedIndex This is used to gets/sets selected tab page‘s

index.

9. ShowToolTips This is used to gets/sets whether a tab‘s tool tip

can be displayed.

10. TabCount This is used to gets the number of tabs.

11. TabPages This is used to gets the collection of tab pages.

The public properties of TabPage objects are listed below:

Sl.No Property Name Description

1. ImageIndex This is used to gets/sets the index of the image in

this tab.

2. Text This is used to gets/sets the text to show in the tab.

3. ToolTipText This is used to gets/sets the tab‘s tool tip text.

Creating TabControls

After you have added a new tab control to a windows form at design time

you can add tab pages to it by opening the TabPages property in the

properties window.

Create a new Tab and tab pages you can follow the following steps:

Step 1: First of all, create a windows form and then drag a TabControl

from toolbox and drop it on windows form, you will look like the following

window.

Step 2: Now as selected state, click on TabPages collection option from the

properties window you will look TabPage collection editor, like the

TabControl

74

following:

Step 3: Here you can add or remove Tab page from the members option by

clicking Add or Remove button respectively. Now click on TabPage1, you

can change the text of TabPage1 from the TabPage1 properties from the right

side, which is marked as a black color circle. Now give the text name of

TabPage1 as ‗Employee info‘ from the TabPage1 properties window and

now click on TabPage2 from left side members option and give the text name

of TabPage2 as ‗History ‗ from the TabPage2 properties and then click ok

button. If you want to add another TabPage, just click add button and change

the corresponding properties. If you want to remove any TabPage, Just click

on that TabPage and click remove button. After completing this work you

will look like the following window:

Step 4: you can create more than one another component on the any tab

page. Now create three Levels, three TextBoxes and two Buttons on

Employee Info Tab page, and give the name as you want. Here we shows an

example page which will look like the following:

 Visual Programming

75

Step 5: Now create Two Levels, One ComboBox and One ListBox and one

Button on History Tab page, and give the name as you want. Here we shows

an example page which will look like the following:

Step 6: Now double click on exit button and type the code ‗End‘ under exit

button of both tab pages, which will look like the following:

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 End

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button3.Click

End

End Sub

Step 7: Now run the program by clicking on run button from the tools bar or

press F5 key from the keyboard. You will look like the following:

TabControl

76

Step 8: Now click on History Tab and clik select educational qualification

from combobox,you will look like the following:

Step 9: Now if you want to exit the program just click on exit button.

Assessment

Assessment

Exercise

1. Write the steps to create TabControl.

 Visual Programming

77

Lesson 3.7

TrackBar Component

Upon completion of this unit you will be able to:

Outcomes

 Know TrackBar control.

 Handle TrackBar Events.

 Setting TrackBar Ticks.

Basic about TrackBar

TrackBar control works much like scroll bar, but they have a different

apperance, resembling the controls you‘d find on stereo. This control

shows on various audio software. TrackBar also can display ticks,giving

the user an idea of the scale used to set the controls value.

The public properties of TrackBar object is shown in following table:

Sl No. Name of

Property
Description

1. AutoSize This property is used to gets/sets if the TrackBar‘s

height or width should be automatically sized.

2. ForeColor This property is used to holds the forgroung color of

the TrackBar.

3. LargeChange This property is used to gets/sets the value added to

or subtract from to the value property when the scroll

box moves a large distance.

4. Maximum This property is used to holds the upper limit of the

range of the TrackBar

5. Minimum This property is used to holds the lower limit of the

range of the TrackBar

6. Orientation This property is used to gets/sets the horizontal or

vertical orientation of the TrackBar.

7. SmallChange This property is used to gets/sets a value which is

added to or subtracted from the value property when

the scroll box moves a small distance.

TrackBar Component

78

8. TickFrequency This property is used to gets/sets a value specifying

the distance between ticks.

9. TickStyle This property is used to gets/sets how to display the

tick marks in the TrackBar.

10. Value This property is used to gets/sets the current position

of the slider in the trackBar.

Handling TrackBar Events

TrackBar have two events such as Scroll event and ValueChanged event.

You can get the current value of the trackBar with the Value property.

The procedure to create a TrackBar control is shown in below step by

step.

Step 1: First of all create a windows form and then drag the TrackBar

icon from the Toolbox and drop it on windows form and also create a

Textbox on windows form. You will look like the following window:

Step 2: Here by default you will look maximum 10 tick. The space

between two vertical line of TrackBar is called tick. If you want to

change this value you can change the maximum and minimum properties

of TrackBar from properties window.

Step 3: Now double click on TrackBar control from the windows form

and then type the following code:

TextBox1.Text = "Track bar value " & TrackBar1.Value

Step 4: Now Run the program and change the Vertical bar of TrackBar

you will look like the following window:

 Visual Programming

79

If you want to configure TrackBar control, you can use the TickStyle

property, which lets you determine how ticks are displayed. This property

can taake values from the TickStyle enumeration. You will look this

enumeration from the TrackBar Properties window. Enumerations are as

follows:

Both: Tick marks are located on both sides of the control

BottomRight: Tick marks are located on the bottom of a horizontal

control or on the right side of a vertical control.

None: No tick marks appeare in the TrackBar control.

TofLeft: Tick Marks are located on the top of a horizontal control or on

the left of a vertical control.

You can set the tick frequency, which sets the distance between ticks with

the TickFrequency property.

Assessment

Assessment

Exercise

1. Write short notes on TrackBar events.

Timer

80

Lesson 3.8

Timer

Introduction

In this lesson, we shall show you how to use timer in VB2008.

Timer is a useful control in Visual Basic. Timer is used to control

and manage events that are time related. For example, you need

timer to create a clock, a stop watch, a dice, animation and more.

Timer is a hidden control at runtime, like the engine of an

automobile. We shall illustrate the usage of timer using a few

examples

Upon completion of this unit you will be able to:

Outcomes

 Use timer.

Creating Digital Clock

In order to create a clock, you need to use the Timer control that comes

with Visual Basic 2008. The Timer control is a control object that is only

used by the developer, it is invisible during runtime and it does not allow

the user to interact with it.

To create the clock, first of all start a new project in Visual Basic 2008

Express and select a new Windows Application. You can give the project

any name you wish, but we will name it MyClock. Change the caption of

the Form1 to MyClock in the properties window. Now add the Timer

control to the form by dragging it from the ToolBox. Next, insert a label

control into the form. Change the Font size of the label to 25 or any size

you wish, set the Font alignment to be middle center and change the

ForeColor and BackColor. Before we forget, you shall also set the

Interval property of the Timer control to 1000, which reflects a one

second interval. You also need to ensure that the Enabled property of the

Timer control is set to true so that the clock starts running as soon as it is

loaded.

 Visual Programming

81

Now, you are ready for the coding.

Private Sub Timer1_Tick(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Timer1.Tick

 Label1.Text = TimeOfDay

End Sub

The digital clock is as shown in the following Figure

Timer

82

Creating Stopwatch

We can create a simple stopwatch using the Timer control. Start a new

project and name it StopWatch. Change the Form1 caption to StopWatch.

Insert the Timer control into the form and set its interval to 1000 which is

equal to one second. Also set the timer Enabled property to False so that

it will not start ticking when the program is started. Insert three command

buttons and change their names to StartButton, StopButton and

ResetButton respectively. Change their text to ―Start‖, ―Stop‖ and

―Reset‖ accordingly. Now, write the code as follows:

 Private Sub Timer1_Tick(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

Timer1.Tick

 Label1.Text = Val(Label1.Text) + 1

 End Sub

 Private Sub StartButton_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

StartButton.Click

 Timer1.Enabled = True

 End Sub

 Private Sub StopButton (ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

Button2.Click

 Timer1.Enabled = False

 End Sub

 Private Sub ResetButton (ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

Button3.Click

 Label1.Text = 0

 End Sub

The Interface of the Stopwatch is as shown below:

 Visual Programming

83

Lesson 3.9 – 3.10

Image

Introduction

PictureBox controls are among the most powerful and complex items in

the Visual Basic Toolbox window. Once you place a PictureBox on a

form, you might want to load an image in it, which you do by setting the

Picture property in the Properties window. You can load images in many

different graphic formats, including bitmaps (BMP), device independent

bitmaps (DIB), metafiles (WMF), enhanced metafiles (EMF), GIF and

JPEG compressed files, and icons. You can decide whether a control

should display a border, resetting the BorderStyle to 0-None if necessary.

Another property that comes handy in this phase is AutoSize: Set it to

True and let the control automatically resize itself to fit the assigned

image.

Upon completion of this unit you will be able to:

Outcomes

 Use picture onto Form.

PictureBox
PictureBox control let you display an image, so let's try it out start a new

VB Windows Forms project and drag-and-drop a PictureBox onto the

form. The PictureBox has a range of standard properties and methods and

some that allow you to load a graphics file and control how it is

displayed.

Image Property

The most important property of either type of control is its Image

property which specifies the graphics file that will be displayed.

Set the Image property in the Properties window the Select

Resource dialog box appears. This lets you specify two different

way of working with files. You can select Project resource file or

you can select Local resource. The difference is that if you select

Project resource file the image file is copied into the project and it

gets distributed with the application automatically. If you select

Local resource then the file is left where you put it and it is just

Image

84

used by the program. Of course this means that if you distribute the

program to other people you have to make sure that you include a

copy of the file and make sure it is stored in the correct location.

You can display a file in GIF, BMP, JPEG, PNG or TIFF format.

You can do more interesting things at run time. To begin with, you

can programmatically load any image in the control by using

Private Sub Form2_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

 PictureBox3.ImageLocation = ("G:\VB-Book-

2008\shahidminar.jpg")

End Sub

Controlling the image

There are a small number of properties that you can set to control

how the image is displayed in the PictureBox. The most important

is the Size Mode property.

 Visual Programming

85

If you set this to Normal then the image will be displayed in the

PictureBox at its correct size. If the picture box is too small then you only

see what fits into the display area and it is too big the image is surrounded

by a Background fill.

If you set this to StretchImage the graphic is scaled so that it fills the

current size of the PictureBox.

Zoom works in the same way as StretchImage but the scaling doesn't

distort the image i.e. it keeps the aspect ratio fixed. Of course this means

that the image might not fill the PictureBox in one dimension.

If you set this to AutoSize then it is the PictureBox which changes its size

to always fit the size of the image being displayed.

CenterImage works like Normal but the image is centered rather than

being in the top left hand corner.

Creating Animation

Although Visual Basic 2008 is generally a programming language, it can

also be used to create animation. In this section, we will show you how to

move an object by pressing a command button. You need to make use of

the Top and Left properties of an object to create animation. The Top

property defines the distance of the object from the top most border of the

screen while the Left property defines the distance of the object from

leftmost border of the screen. By adding or subtracting the distance of the

object we can create the animated effect of moving an object.

Start a new project and name it as animation, or any name you wish. Now

In the PictureBox properties window, select the image property and click

to import an image file from your external sources such as your hard

drive, your Pendrive or DVD. Next, insert command buttons; change their

captions to down, left.

Now,

Click on the buttons and key in the following code:

Private Sub MoveDownBtn_Click(ByVal sender As System.Object,

Image

86

ByVal e As System.EventArgs) Handles MoveDownBtn.Click

PictureBox1.Top = PictureBox1.Top + 10

End Sub

Private Sub MoveLeftBtn_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles MoveLeftBtn.Click

PictureBox1.Left = PictureBox1.Left – 10

End Sub

Private Sub MoveRightBtn_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MoveRightBtn.Click

PictureBox1.Left = PictureBox1.Left + 10

End Sub

Explanation:

Each time the user clicks on the Move Down button, the distance of the

PictureBox increases by 10 pixels from the top border, creating a

downward motion. On the other hand, each time the user clicks on the

Move Up button, the distance of the PictureBox decreases by 10 pixels

from the top borders, thus creating an upward motion.

Creating Animation using Timer

We can create continuous animation using timer without the need to

manually clicking a command button. We can create left to right or top to

bottom motion by writing the necessary code.

First of all, insert a PictureBox into the form. In the PictureBox properties

window, select the image property and click to import an image file from

your external sources such as your hard drive, your Pendrive or DVD.

Next, insert a Timer control into the form set its interval property to 100,

which is equivalent to 0.1 second. Finally, add two command button to

the form, name one of them as AnimateBtn and the other one as StopBtn,

and change to caption to Animate and Stop respectively.

We make use of the Left property of the PictureBox to create the motion.

PictureBox.Left means the distance of the PictureBox from the left border

of the Form . Now click on the Timer control and type in the following

code:

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Timer1.Tick

If PictureBox1.Left < Me.Width Then

PictureBox1.Left = PictureBox1.Left + 10

Else

PictureBox1.Left = 0

 Visual Programming

87

End If

End Sub

In the code above, Me.Width represents the width of the Form. If the

distance of the PictureBox from the left is less than the width of the Form,

a value of 10 is added to the distance of the PictureBox from the left

border each time the Timer tick, or every 0.1 second in this example.

When the distance of the PictureBox from the left border is equal to the

width of the form, the distance from the left border is set to 0, which

move the PictureBox object to the left border and then move left again,

thus creates an oscillating motion from left to right. We need to insert a

button to stop motion. The code is:

Timer1.Enabled = False

To animate the PictureBox object, we insert a command button and key in

the following code:

Timer1.Enabled = True

The Image of the Animation program is shown below:

