
School of Science and Technology DCSA Program

170

 Structures and Unions

INTRODUCTION

In the previous unit 7 we have studied about C functions and their declarations, definitions,

initializations. Also we have learned importance of local and global variables and their scope and life

time. In this unit we will describe about another important topic in C language like structures. We

have seen that, arrays can be used to represent a group of same data items. In the some cases, if we

want to represent a collection of data items of different types using a single name, then we cannot

use an array. For this reason, C language supports an assembled data type known as structure. In this

unit, we will describe in detail how a structure is defined, initialized, and how structure works in a

program.

Timeframe

How long ?

We expect that this unit will take maximum 5 hours to complete.

Unit Structure

 Lesson- 1 : Introduction to C Structures

 Lesson- 2 : Structure Initialization

Unit

8

School of Science and Technology DCSA Program

171

 Introduction to C Structures

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Understand basic idea about C structures.

 Learn necessity of structures in C program.

 Understand how a structures are declared and defined in program.

Keywords Structure, Definition, Declaration, Member

STRUCTURES IN C

We have studied that, an array is one kind of data structures that can be used to demonstrate a group of

data items that belongs to the same type like int, float, char, double etc. But if we want to represent or

demonstrate a collection of different types of data items using a single name, then we cannot use an

array. For this reason, in C language supports a user defined data type known as structure. Actually,

structure is user defined data type available in C that allows combining different kinds of data items

using a single name.

On the other word, a structure is a well-situated tool for handling a collection of logically related data

items. It is used to represent a record or a set of attributes, such as student_name, roll_number,

obtained_mark and cgpa etc. It is a powerful concept that we can often need to use in our program

design.

STRUCTURE DEFINITION/DECLARATION

A structure is a collection of deferent type variables under a single name. Structures assist to arrange

complex data in a more meaningful. A structure declaration or definition generates a format that can be

used to declare structure variables. To define a structure, we must use the keyword struct statement.

The keyword struct statement defines a new data type, with more than one member. It declares a

structure to hold the details of member fields. The general format of the structure definition is as

follows:

struct struct_tag_name

{

 data_type member-1;

 data_type member-2;

 data_type member-3;

 ………… …. ….

 ……….. …. ….

 data_type member-n;

} one or more structure variables;

Here, the struct_tag_name is called structure tag name and it is optional and each member definition is

a normal variable definition, such as int a, float b, char c or char c[] etc; or any other valid variable

Lesson-1

Structure fields or

elements or member

School of Science and Technology DCSA Program

172

definition. The tag name may be used subsequently to declare variables that have the tag structure. The

fields are called structure elements or members. Each member may belong to different type of data. At

the end of the structure's definition, before the final semicolon, you can specify one or more structure

variables. Let us use an example to illustrate the process of structure definition and the creation of

structure variables. Consider a book data base consisting of book title, author name, subject, number of

pages, price and book id. We can define a structure to hold this information as follows:

struct Books

{

 char title[50];

 char author[50];

 char subject[100];

 int pages;

 float price;

 int book_id;

}book;

We can declare structure variables using structure tag name anywhere in the program. For instance, the

statement

struct Books book, book1, book2, book3;

declares book, book1, book2 and book3 as variables of type struct Books.

A structure is a collection of deferent type variables under a single name. Structures

assist to arrange complex data in a more meaningful.

ACCESSING STRUCTURE MEMBERS

If we want to access any member or field of a structure, we may use the “member access operator (.)”

also called dot operator or period operator. The member access operator (.) is coded as a period between

the structure variable name and the structure member that we wish to access.

For example

 book.title

 book.price

 book. book_id

are the variables representing the title, price and book id of book and can be treated like any other

ordinary variable. Here is how we should assign values to the members of book:

strcpy(book.title, “ C Programming”);

strcpy(book.author, “ Amran Hossain”);

book.pages=300;

book.price=500.00;

book.book_id=34521;

We can also use scanf() function to give the values through the keyword

scanf(“%s\n”,book.title);

scanf(“%s\n”,book.author);

scanf(“%d\n”,book.pages);

scanf(“%f\n”,book.price);

Structure variable

School of Science and Technology DCSA Program

173

scanf(“%d\n”,book.book_id);

are valid input statements.

Program 8.1.1: Write a C program that defining and assigning value to structure members.

#include <stdio.h>

#include <string.h>

#include<conio.h>

struct Books

{

 char title[100];

 char author[100];

 char subject[100];

 int pages;

 float price;

 int book_id;

} Book1,Book2; /* Declare Book1 and Book2 of type Books */

void main()

{

 clrscr();

 /* Book 1 specifications */

 strcpy(Book1.title, "C Programming Language");

 strcpy(Book1.author, "Mr. Amran Hossain");

 strcpy(Book1.subject, "C Programming Structure Tutorial");

 Book1.pages=300;

 Book1.price=300.50;

 Book1.book_id = 32456;

 /* Book 2 specifications */

 strcpy(Book2.title, "Operating Systems");

 strcpy(Book2.author, "Dr. Nasim Akhter");

 strcpy(Book2.subject, "Linux Tutorial");

 Book2.pages=400;

 Book2.price=350.50;

 Book2.book_id = 12345;

 /* print Book1 information */

 printf("Book 1 title : %s\n", Book1.title);

 printf("Book 1 author : %s\n", Book1.author);

 printf("Book 1 subject : %s\n", Book1.subject);

 printf("Book 1 page : %d\n", Book1.pages);

 printf("Book 1 price : %f\n", Book1.price);

 printf("Book 1 book_id : %d\n", Book1.book_id);

 /* print Book2 information */

 printf("Book 2 title : %s\n", Book2.title);

 printf("Book 2 author : %s\n", Book2.author);

 printf("Book 2 subject : %s\n", Book2.subject);

 printf("Book 2 page : %d\n", Book2.pages);

 printf("Book 2 price : %f\n", Book2.price);

 printf("Book 2 book_id : %d\n", Book2.book_id);

 getch();

}

School of Science and Technology DCSA Program

174

…………………………………………………………………………….

Output

Program 8.1.2: Define a structure type, struct personal that would contain person name, person

designation, date of joining and salary. Using this structure, write a program to read this

information for one person from the keyboard and print the same on the screen.

#include<stdio.h>

#include<conio.h>

struct personal

{

 char person_name[50];

 char person_desig[30];

 int day;

 char month[12];

 int year;

 float salary;

};

void main()

{

 clrscr();

 struct personal person;

 printf("Enter Person Name:\n");

 scanf("%s",person.person_name);

 printf("Enter Person Designation :\n");

 scanf("%s",person.person_desig);

 printf("Enter person joining day:\n");

 scanf("%d",&person.day);

 printf("Enter Person joining month:\n");

 scanf("%s",person.month);

 printf("Enter Person joining year:\n");

 scanf("%d",&person.year);

 printf("Enter person Salary:\n");

 scanf("%f",&person.salary);

 printf("All informations are:\n");

 printf("%s %s %d %s %d %.2f\n",person.person_name,

 person.person_desig,person.day,person.month,person.year,person.salary);

 getch();

}

……………………………………………………………………………………

Output:

School of Science and Technology DCSA Program

175

If we want to access any member or field of a structure, we may use the “member access

operator (.)” also called dot operator or period operator.

Study skills

1. Describe what is wrong in the following structure declaration:

struct

{

 int number;

 float price;

}

void main()

{

 ……………

}

2. Find the error(s) from the following code segments:

struct examtest

 {

 char name[];

 int year, day;

 double cgpa;

 }

 void main()

 {

 struct examtest;

 printf(“ Input Values: \n”);

 scanf(“%d %d %d %ld”, name, year, day, cgpa);

 ………………………

 }

 3. Describe what is wrong in the following structure declaration:

struct

{

 int number;

 float price;

}

void main()

{

 ……………

 }

School of Science and Technology DCSA Program

176

Summary

Summary

In this lesson we have

 Learned about C structures definition and declaration.

 Learned initialization procedure of structure.

 Also understood how structure variables are compared.

ASSIGNMENT

Assignment

1. Write a program to determine the greatest common divisor (GCD) and least common

multiple (LCM) of two integer number using structure.

…..………………………………………………………………………….…..

………………………………………………………………………………….

2. Define a structure that can describe a hotel. It should have members that include the

hotel name, address, grade, room charge, room category and number of rooms.

………………………………………………………………………………..

 ………………………………………………………………………………..

3. Define a structure called company that will describe the following information:

 Company Name

 Company location

 Total employees

 Salary status

 Bonus system

Assessment

Assessment

Multiple Choice Questions (MCQ)

1. A structure is a well-situated tool for handling—

a) A collection of logically related data

items

b) A collection of physical related data

items

c) Single logically related data items d) None of these.

2. To define a structure, we must use the keyword—

a) Structure

statement

b) struct statement c) Structure tag

statement

d) None of these

3. If we want to access any member of a structure, we may use the

a) (&) operator b) (%) operator c) (.) operator d) (| |) operator

4. Which of the following is correct?

a) structure student1=(100,20,400.50 ,

“XXX”);

b) structure student1={100,20,400.50 ,

“XXX”};

c) struct student1= “100,20,400.50 ,

“XXX””;

d) struct student1= {100,20,400.50 ,

“XXX”};

Exercises

1. What is structure? Explain structure declaration procedure with an example.

2. What do you mean by structure initialization? Explain with proper example.

3. How does a structure differ from an array?

School of Science and Technology DCSA Program

177

 Structures Initialization

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Explain procedure of structure initialization.

 Understand the comparison of structure variables.

Keywords Structure, Initialization, Comparison, Variable

STRUCTURE INITIALIZATION

Similar to any other data type, a structure variable can be initialized. When initializing an object or

member of structure, it must be a non-empty, brace-enclosed, comma-separated list of initializers for

the members. Consider the following example for structure initialization as follows:

struct student_record

 {

 int marks;

 int age;

 float cgpa;

 }student={70,24,3.20};

Here, the above initialization procedure, assigns the value 70 to student.marks, 24 to student.age and

3.20 to student.cgpa member variables respectively. There is one-to-one correspondence between the

members and their initializing values. Various processes are possible in initializing a structure. The

following statements initialize three structure variables. Here, it is necessary to use a structure tag name.

Consider the following initialization example:

struct student_record

 {

 int marks;

 int age;

 float cgpa;

 };

struct student_record student1={80,20,4.00};

struct student_record student2={60,22,3.50};

Another process is to initialize a structure variable inside the main function as follows:

struct student_record

 {

 int marks;

 int age;

 float cgpa;

 } student1={80,20,4.00};

 void main()

Lesson-2

http://en.cppreference.com/w/c/language/initialization
http://en.cppreference.com/w/c/language/struct

School of Science and Technology DCSA Program

178

 {

 struct student_record student2={60,22,3.50};

 ………………………..

 ………………………..

 }

 COMPARISON OF STRUCTURE VARIABLES

Two variables of the same structure type can be compared the same way as normal variables. If

student1 and student2 belong to the same structure, then the following operations are possible:

Operation Description

student1= student2 Assign student1 values to student1

student1= =student2 Compare all members of student1 and

student2. If they are equal then return 1,

otherwise return 0.

student1 != student2 If all the members of student1 and student2

are not equal then return 1 otherwise return 0.

Figure 8.2.1: Comparison of structure variables

Program 8.2.1: Write a C program to illustrate the comparison of structure variables.

#include<stdio.h>

#include<conio.h>

struct student_record

{

 char student_name[30];

 int marks;

 int age;

 float cgpa;

};

void main()

{

 clrscr();

 int record;

 struct student_record student1={"Amran",78,24,3.89};

 struct student_record student2={"Mamun",70,30,3.50};

 struct student_record student3;

 student3=student2;

 record=((student3.marks= =student2.marks)&&(student3.cgpa= =student2.cgpa))?1:0;

 if(record = =1)

 {

 printf("\n Student2 and Student3 marks and cgpa are same!!\n\n\n ");

 printf("%s %d %d %f", student3.student_name, student3.marks,

 student3.age,student3.cgpa);

 }

 else

 {

 printf("\n Student 2 and student 3 are different\n\n");

 }

 getch();

School of Science and Technology DCSA Program

179

}

………………………………………………………………………………….…………..

Output

Student2 and Student3 marks and cgpa are same!!

Mamun 70 30 3.500000

Two variables of the same structure type can be compared the same way as normal

variables.

Study skills

1. Describe what is wrong in the following structure declaration:

 struct test_rec

 {

 int val1;

 int val2;

 float price;

 }test={70,2.4,320};

2. Find the error(s) from the following code segments:

 struct product

 {

 int pro_id;

 char pro_name;

 float pro_price;

 int quantity;

 } prolist={T80,20,47.50,5.00};

 void main()

 {

 struct prolist2={600, ‘B’,22,3.50};

 ………………………..

 ………………………..

 }

Summary

Summary

In this lesson we have

 Learned initialization procedure of structure.

 Also understood how structure variables are compared.

Activity

1. Mention the significance of using structure in C language by your own idea.

 ……………………………………………………………………………….……

 .……………………………………………………………………………………

School of Science and Technology DCSA Program

180

ASSIGNMENT

Assignment

1. Define a structure called company that will describe the following information

and initialize all information’s using structure initialization procedure:

 Company Name

 Company location

 Total employees

 Salary status

 Bonus system

Assessment

Assessment

Multiple Choice Questions (MCQ)

1. To define a structure, we must use the keyword—

a) Structure statement

b) struct statement

c) Structure tag statement

d) None of these

2. Which of the following is correct?

a) structure student1=(100,20,400.50 , “XXX”);

b) structure student1={100,20,400.50 , “XXX”};

c) struct student1= “100,20,400.50 , “XXX””;

d) struct student1= {100,20,400.50 , “XXX”};

3. Two variables of the same structure type can be compared the-

a) Same way as formal variables of a function

b) Same way as normal variables

c) Same way as array initialization

d) None of these

4. When initializing an object of structure, it must be-

a) Non-empty, brace-enclosed, comma-separated

b) Empty, brace-enclosed

c) Only non-empty and brace-enclosed

d) Only comma-separated

Exercises

1. What do you mean by structure initialization? Explain with proper example.

2. How does a structure differ from an array?

3. Mention and describe the various comparisons of structure variables with an example.

http://en.cppreference.com/w/c/language/initialization
http://en.cppreference.com/w/c/language/struct

