
School of Science and Technology DCSA Program

26

 Operators

INTRODUCTION

In the previous units (unit 1 and 2) you have learned about the basics of computer programming,

different data types, constants, keywords and basic structure of a C program. You've learned how to

declare and initialize variables and constant. In this unit you will learn about operator, Operators are

special symbols that perform specific operations on one, two, or three operands, and then return a

result; and finally will explore the operators available in C programming language.

Timeframe

How long ?

We expect that this unit will take maximum 3 hours to complete.

Unit Structure

 Lesson- 1 : Operator part -1

 Lesson- 2 : Operator part -2

Unit

3

School of Science and Technology DCSA Program

27

 Operator Part-1

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define Operator.

 Classify Operator.

 Explain arithmetic operator.

Keywords Operator, Arithmetic, Precedence

OPERATOR

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions.

Operators, functions, constants and variables are combined together to form expressions. Consider the

expression A + B * 5 where, +, * are operators, A, B are variables, 5 is constant and A + B * 5 is an

expression. C language is rich in built-in operators and provides the following types of operators:

Types of Operators Description

Arithmetic operators These are used to perform mathematical calculations like addition,

subtraction, multiplication, division and modulus

Assignment operators These are used to assign the values for the variables in C programs.

Relational operators These operators are used to compare the value of two variables.

Logical operators These operators are used to perform logical operations on the given two

variables.

Bit wise operators These operators are used to perform bit operations on given two

variables.

Conditional (ternary)
operators

Conditional operators return one value if condition is true and returns

another value is condition is false.

Increment/decrement
operators

These operators are used to either increase or decrease the value of the

variable by one.

Special operators &, *, sizeof() and ternary operators.

ARITHMETIC OPERATORS

Computer programs are widely used for mathematical calculations. In C language we have the usual

arithmetic operators for addition, subtraction, multiplication and division. C also provides a special

arithmetic operator which is called modulus. All these operators are binary operators which means they

operate on two operands. So we need two values for addition, subtraction, multiplication, division and

modulus. The following table lists down a few of the important arithmetic operators available in C

programming language. Assume variable x holds 10 and variable y holds 20, then:

Lesson -1

School of Science and Technology DCSA Program

28

OPERATOR OPERATION DESCRIPTIONS C
EXPRESSION

EXAMPLE

+ Addition Adds two operands x + y x + y = 30

- Subtraction Subtracts second

operand from the first

x - y x-y = 10

* Multiplication Multiplies both operands x * y x * y = 200

/ Division Divides numerator by

de-numerator

x / y x / y = 2

% Modulus provide remainder of an

integer division

x % y x % y = 0

 Addition, subtraction and multiplication are same as we use in algebra. There is one thing to note in

division that when we use integer division (i.e. both operands are integers) yields an integer result. This

means that if, for example, you are dividing 5 by 2 (5 / 2) it will give integer result as 2 instead of actual

result 2.5. Thus in integer division the result is truncated to the whole number, the fractional part (after

decimal) is ignored. If we want to get the correct result, then we should use float data type. The modulus

operator returns the remainder after division. This operator can only be used with integer operands. The

expression x % y returns the remainder after x is divided by y. For example, the result of 5 % 2 will

be 1, 23 % 5 will be 3 and 107%10 will be 7.

INCREMENT, DECREMENT OPERATORS (++, --)

Increment and decrement are common arithmetic operation. C provides two short cuts for the same.

Postfix- will return the current value and then increment/ decrement.

 x++ is a short cut for x=x+1; will return the current value and then increment.

 x-- is a short cut for x=x-1; will return the current value and then decrement.

Prefix:

 ++x is a short cut for x=x+1; will increment x and then return the value (so it will return one greater

than the original value)

 --x is a short cut for x=x-1; will decrement a and then return the value (so it will return one less than

the original value)

PRECEDENCE OF OPERATORS

The arithmetic operators in an expression are evaluated according to their precedence. The precedence

means which operator will be evaluated first and which will be evaluated after that and so on. In an

expression, the parentheses () are used to force the evaluation order. The operators in the parentheses (

) are evaluated first. If there are nested parentheses then the inner most is evaluated first. The

expressions are always evaluated from left to right. The operators *, / and % have the highest precedence

after parentheses. These operators are evaluated before + and – operators. Thus + and – operators has

the lowest precedence. It means that if there are * and + operators in an expression then first the * will

be evaluated and then its result will be added to other operand. If there are * and / operators in an

expression then the operator which occurs first from left will be evaluated first and then the next, except

you force any operator to evaluate by putting parentheses around it. The following table explains the

precedence of the arithmetic operators:

OPERATOR OPERATIONS PRECEDENCE (ORDER OF EVALUATION)

() Parentheses Evaluated first

*, /, or % Multiplication,

Division, Modulus

Evaluated second. If there are several, they are

evaluated from left to right

+ or - Addition, Subtraction Evaluated last. If there are several, they are evaluated

from left to right

School of Science and Technology DCSA Program

29

Let’s look some examples. What is the result of 10 + 10 * 5? The answer is 60 not 100. As * has

higher precedence than + so 10 * 5 is evaluated first and then the answer 50 is added to 10 and we get

the result 60. The answer will be 100 if we force the addition operation to be done first by putting 10 +

10 in parentheses. Thus the same expression rewritten as (10 + 10) * 5 will give the result 100. Note

that how the parentheses affect the evaluation of an expression. Similarly the expression 5 * 3 + 6 / 3

gives the answer 17, and not 7. The evaluation of this expression can be clarified by writing it with the

use of parentheses as (5 * 3) + (6 /3) which gives 15 + 2 = 17. Thus you should be careful while writing

arithmetic expressions.

Activity

1. Suppose a, b and c are integer variables that have been assigned the values a = 8, b

= 3 and c = -5. Determine the value of each of the following arithmetic expressions.

a) a +b + c

b) 2 * b + 3 * (a-c)

c) a / b

d) a % b

e) a * b / c

f) a * (b / c)

g) (a * c) % b

h) a * (c % b).

2. Is 2 + 5 * 2 equal to (2 + 5) * 2?

3. Does 7 % 2 produce the same result as 4 % 3?

School of Science and Technology DCSA Program

30

 Operator Part-2

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define relational operator.

 Use logical Operator.

 Explain assignment operator.

Keywords Relational, Logical, Bitwise

RELATIONAL OPERATOR

A relational operator takes a pair of expressions as operands and returns a logical value, true or false.

There are six common relational operators: ==, !=, >, <  ,  , . The following table shows all the

relational operators supported by C. Assume variable x holds 10 and variable y holds 20, then:

OPERATOR DESCRIPTION EXAMPLE

= = Checks if the values of two operands are equal or not. If yes,

then the condition becomes true.

(x == y) is not true.

!= Checks if the values of two operands are equal or not. If the

values are not equal, then the condition becomes true.

(x ! = y) is true.

> Checks if the value of left operand is greater than the value of

right operand. If yes, then the condition becomes true.

(x > y) is not true.

< Checks if the value of left operand is less than the value of right

operand. If yes, then the condition becomes true.

(x < y) is true.

>= Checks if the value of left operand is greater than or equal to the

value of right operand. If yes, then the condition becomes true.

(x >= y) is not true.

<= Checks if the value of left operand is less than or equal to the

value of right operand. If yes, then the condition becomes true.

(x <= y) is true.

LOGICAL OPERATOR
Logical operators are very important in any programming language and they help us take decisions

based on certain conditions.

OPERATOR OPERATIONS DESCRIPTIONS EXAMPLE

&& Logical AND If both the operands are true, then

condition becomes true.

(x>5)&&(y<5)

|| Logical OR If any of the two operands is true, then

condition becomes true.

(x>=10)||(y>=10)

! Logical NOT Use to reverses the logical state of its

operand. If a condition is true then Logical

NOT operator will make false.

!((x>5)&&(y<5))

Lesson-2

School of Science and Technology DCSA Program

31

ASSIGNMENT OPERATOR

Operator Description Example

= Simple assignment operator. Assigns values

from right side operands to left side operand.

C = A + B will assign the value of A

+ B to C

In C programs, values for the variables are assigned using assignment operators. For example, if the

value “10” is to be assigned for the variable “sum”, it can be assigned as “sum = 10;” In C language

equal-to-sign (=) is used as assignment operator. Do not confuse the algebraic equal-to with the

assignment operator. In Algebra X = 2 means the value of X is 2, whereas in C language X = 2 (where

X is a variable name) means take the value 2 and put it in the memory location labeled as X, afterwards

you can assign some other value to X, for example you can write X = 10, that means now the memory

location X contains the value 10 and the previous value 2 is no more there. In C language the statement

X = X + 1 means that add 1 to the value of X and then store the result in X variable. If the value of X is

10 then after the execution of this statement the value of X becomes 11. This is a common practice for

incrementing the value of the variable by ‘one in C language. Similarly you can use the statement X =

X - 1 for decrementing the value of the variable by one. Remember that assignment operator must have

a variable name on left hand side unlike algebra in which you can use expression on both sides of equal

sign (=). For example, in algebra, X +5 = Y + 7 is correct but incorrect in C language. The compiler

will not understand it and will give error.

C provides compound assignment operators that can be used instead.

 x+=1 /∗is the same as x=x+1∗/

 x-=1 /∗is the same as x=x-1∗/

 x∗=10 /∗is the same as x=x∗10 ∗/

 x/=2 /∗ is the same as x=x/2

 x%=2 /∗is the same as x=x%2

Note that the "==" equality operator is different from the "=", assignment operator.

TERNARY OPERATOR (?:)

Conditional operators return one value if condition is true and returns another value is condition is false.

This operator is also called as ternary operator.

Syntax : (Condition? true_value: false_value);

Example : (A > 100 ? 0 : 1);

In above example, if A is greater than 100, 0 is returned else 1 is returned. This is equal to if else

conditional statements.

One more example

if(a > b)

result = x;

else

result = y;

is equivalent to

result = a > b ? x : y;

Study skills

1. What is the output of this C code?

 #include <stdio.h>

 int main()

 {

 int a = 1, b = 1, c;

 c = a++ + b;

 printf("%d, %d", a, b);

 }

a) a = 1, b = 1 b) a = 2, b = 1

c) a = 1, b = 2 d) a = 2, b = 2

Correct answer is: b

2. What is the output of this C code?

 #include <stdio.h>

 int main()

 {

 int a = 10, b = 10;

 if (a = 5)

 b--;

 printf("%d, %d", a, b--);

}

a) a = 10, b = 9 b) a = 10, b = 8

c) a = 5, b = 9 d) a = 5, b = 8

School of Science and Technology DCSA Program

32

Summary

Summary

In this lesson

 We have understood about various types of C operators and operands.

 Also understood operator precedence.

Assessment

Assessment

Fill in the blanks

3. In C logical AND represents as…………

4. …….. operator is called “modulus operator” in C

 Multiple Choice Questions (MCQ)

1. Which of the following is not an arithmetic operation?

e) a *= 10;

f) a /= 10;

g) a != 10;

h) a %= 10;

2. The operator + in a+=4 means

a) a = a + 4

b) a + 4 = a

c) a = 4

 d) a = 4 + 4

3. The most commonly used assignment operator is

a) =

b) ==

c) >=

 d) :=

Exercises

1. State C operators and their classification.

2. What is an operand? What is the relationship between operators and operands?

3. Write the difference between = and == in C programming.

4. Describe the arithmetic, relational, logical, assignment, increment, decrement and

conditional operators with suitable example.

5. Describe the precedence of arithmetic operators.

6. Write programs using operators.

7. Describe the four relational operators include in C. With what type of operands can they be

used?

